Evolution of Discontinuity and Formation of Triple-Shock Pattern in Solutions to a Two-Dimensional Hyperbolic System of Conservation Laws

نویسندگان

  • Gui-Qiang G. Chen
  • Dehua Wang
  • Xiaozhou Yang
چکیده

The evolution of discontinuity and formation of triple-shock pattern in solutions to a two-dimensional hyperbolic system of conservation laws are studied. When the initial discontinuity is a convex curve, it is discovered that the structure of the global solution changes dramatically around a critical time: After the critical time, a triple-shock pattern forms, while, before the critical time, only two shocks are developed. The envelope surface of intersections and the evolution of discontinuity are analyzed by developing new ideas and approaches. The global structure of the entropy solution is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

A Level Set Algorithm for Tracking Discontinuities in Hyperbolic Conservation Laws I: Scalar Equations

A level set algorithm for tracking discontinuities in hyperbolic conservation laws is presented. The algorithm uses a simple finite difference approach, analogous to the method of lines scheme presented in [20]. The zero of a level set function is used to specify the location of the discontinuity. Since a level set function is used to describe the front location, no extra data structures are ne...

متن کامل

Constraints on Possible Singularities for the Unsteady Transonic Small Disturbance (UTSD) Equations

We discuss the singular behavior of solutions to two-dimensional, general secondorder, uniformly elliptic equations in divergence form, with bounded measurable coefficients and discontinuous Dirichlet data along a portion of a Lipschitz boundary. We show that the conjugate to the solution develops a singularity that is at least logarithmic along the boundary at the points of discontinuity in th...

متن کامل

Gradient Driven and Singular Flux Blowup of Smooth Solutions to Hyperbolic Conservation Laws

We consider two new classes of examples of sup-norm blowup in finite time for strictly hyperbolic systems of conservation laws. The explosive growth in amplitude is caused either by a gradient catastrophe or by a singularity in the flux function. The examples show that solutions of (uniformly) strictly hyperbolic systems can remain as smooth as the initial data until the time of blowup. Consequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2009